
Abstract. A general theory of the absolute rates of
chemical reactions proved to be an elusive goal for
nineteenth century chemists. This goal would only be
achieved through a combination of statistical mechanics
with the new quantum mechanics of the early twentieth
century, when the insights of Henry Eyring and his
contemporaries lead to the absolute rate equation that
we are only now beginning to rigorously evaluate. The
conceptual focus of absolute rate theory is the transition
state (or activated complex), the window through which
the future plunges into the past, and this is still the
foundation of our understanding of chemical reaction
rates as we enter the new millennium.
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1 Introduction

The great achievement of fundamental chemical theory
of the nineteenth century was the conceptualization of
bulk matter in equilibrium through thermodynamics
and statistical mechanics. The early twentieth century
brought an understanding of the periodic table and the
behavior of individual molecules through quantum
mechanics. The transition-state theory (TST) of Henry
Eyring [1] combined these two theories to provide the
fundamental conceptual framework for our under-
standing of the rates of chemical reactions. Very few
single articles have had such a dramatic impact on
chemistry. This paper is the starting point for any
qualitative or quantitative discussion of bulk chemical
reaction rates. Our concept of the nature of the
transition state (TS) has evolved somewhat, but it is
still a dividing surface separating products from
reactants: ``the now and the here ± through which all
future plunges into the past'' [2].

The absolute rate of a chemical reaction is a problem
®rst addressed in the middle of the last century, but it
was the insights of Eyring and his contemporaries in the

1930s that lead to the equation that we are only now
beginning to rigorously evaluate. I shall give just enough
selective history to set the scene for Eyring's work and to
present these ideas in the context in which they were
introduced. Then I shall give a selective sampling of the
path down which Eyring sent us ± a path that promises
unimagined new discoveries well into the next mil-
lennium.

2 Background

The temperature dependence of rate constants was
examined by Wilhelmy as early as 1850 [3], but it was
not until 1889 that the correct equation,

krate�T � � A exp�ÿDEz=kT � ; �1�
for the basic temperature dependence was proposed by
Arrhenius [4]. The development of the theory of
chemical kinetics then focused on the preexponential
factor, A, and the activation energy, DEz. The simple
interpretation of the Arrhenius equation assigned A to
the collision frequency and DEz to the minimum energy
required for a successful (i.e. reactive) collision. It
gradually became clear that nature was a good bit more
subtle and thus far more interesting than this very simple
suggestion.

A macroscopic thermodynamic understanding of the
preexponential factor was greatly advanced by the
work of Kohnstamm and Sche�er [5], who introduced
the concept of the Gibbs free energy of activation. A
complementary molecular understanding came from
the collision theory approach of McC Lewis [6], which
is rather remarkable for its simplicity. If a ``collision''
between molecules A and B is de®ned as the two
molecules coming within �rA � rB�, the sum of the ra-
dii, then each molecule of A with relative velocity mAB

will sweep out a cylinder of length mAB dt and cross
section p�rA � rB�2. The mean relative velocity, mAB,
had been calculated 50 years earlier by Maxwell and
Boltzmann [7]:

mAB � 8kT =plAB� �1=2 ; �2�
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where the reduced mass, lAB, is mAmB=�mA � mB�. The
number of B molecules in the collision cylinder is then

dNB � NB=V� �p rA � rB� �2 8kT
p

mA � mB

mAmB

� �� �1=2
dt �3�

and so the total rate of collisions per unit volume for all
A molecules is

d Ncoll=V� �
dt

� NA=V� � NB=V� � rA � rB� �2

� 8pkT
mA � mB

mAmB

� �� �1=2
�4�

giving the collision theory rate constant

krate�T � � rA � rB� �2 8pkT
mA � mB

mAmB

� �� �1=2
� exp�ÿDEz=kT � : �5�

The preexponential factor is often called the collision
frequency and is abbreviated zAB. In order to achieve
even qualitative agreement with experiment, it was
necessary to introduce an empirical ``steric factor'',
P;AB, which is generally between 0.01 and 1.0, but
occasionally is outside this range:

krate�T � � PABzAB exp�ÿDEz=kT � : �6�
The mathematical problem was thus reduced to the very
physical problem of understanding why most collisions
between molecules with su�cient energy to react never-
theless do not lead to chemical reaction.

By 1914 Marcelin [8] had shown that the Arrhenius
equation could be derived from statistical mechanics.
However, the nature of both the preexponential fac-
tor, A, and the activation energy, DEz, remained un-
determined until 1919 when Herzfeld [9] derived the
correct form of A for the dissociation of a diatomic
molecule:

krate�T � � �kT=h�Qÿ1vib exp�ÿDEz=kT � : �7�
The ®rst understanding of the real nature of DEz can be
traced to Tolman's proof that the activation energy is
the di�erence between the energy of the activated state
necessary for reaction and the average energy of the
reactant molecules [10, 11].

The formalism for the quasiseparation of nuclear co-
ordinates from electronic coordinates was introduced by
Born and Oppenheimer in 1927 [12]. However, it was the
1929 paper by London [13] and the 1931 paper by Eyring
and Polanyi [14] that introduced the potential-energy
surface (PES) for a chemical reaction and thus created the
conceptual framework for modern kinetic theory. The
following year Pelzer and Wigner [15] identi®ed the sad-
dle point on the PES as the TS. The stage had been set.

3 Henry Eyring's TST

Eyring formulated absolute reaction rates ``in terms of
quantities which are available from potential energy
surfaces'' [1]. He de®ned the ``activated complex'' (we

now prefer transition state) as ``a saddle point with
positive curvature in all degrees of freedom except the
one which corresponds to crossing the barrier [i.e. the
reaction path] for which it is of course negative.'' He
assumed that once the forces between atoms have been
treated quantum mechanically, the reaction rate can
then be calculated by the methods of statistical mechan-
ics. The fundamental idea was to treat the molecular ¯ux
from reactants to products as a one-dimensional prob-
lem along the reaction path by taking an ensemble
average over all other degrees of freedom.

The partition function for the forward motion along
the reaction path (rp) is

dQ
d�rp� � 2plrpkT

ÿ �1=2
=2h : �8�

Eyring multiplied this sum of states by the average
velocity along the reaction path

p=lrp


 � � Z1
0

�p=lrp� exp�ÿ�p2=2lrpkT ��dp

�Z1
0

exp�ÿ�p2=2lrpkT ��dp

� 2kT=plrp

� �1=2 �9�
to obtain the ¯ux (frequency factor) along the reaction
path

dNrp

dt
� kT=h : �10�

He performed an ensemble average over all remaining
coordinates to obtain the total ¯ux through the dividing
surface:

dN z

dT
� �kT =h�NANB QzV =QAVQBV

ÿ �
exp�ÿDEz0=kT � ;

�11�
where Qz, QA, and QB are the partition functions of
the TS and the reactants, and DEz0 is the energy of the TS
elative to the reactants. Eyring's ``barrier height'', DEz0,
included the change in quantum mechanical zero-point
energy. His TS partition function, Qz, includes all
degrees of freedom except the reaction path, which was
treated separately. Eyring's ®nal expression for the
absolute rate constant was

krate�T � � �kT=h� Qz=QAQB

ÿ �
j�E�exp�ÿDEz0=kT � ; �12�

where j�E� is the ``transmission coe�cient'' (vide infra).
The TST rate equation has the appearance of an

equilibrium expression; however, all that is really nec-
essary for the validity of Eq. (12) is that the reactants are
at thermal equilibrium (thus de®ning the temperature, T )
and that a su�cient number of A and B molecules pass
through our ``window'', or ``dividing surface'', to give a
statistically valid sample of the phase space around the
TS. It is of no consequence that few of them may return
to the reactant side. Eyring allowed for such recrossing
through a factor equal to the reciprocal of the average
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number of crossings (our j), but assumed that ``the
barriers are so ¯at near the top that tunneling may be
neglected without appreciable error.'' We shall follow
Wigner [16] and include tunneling through the energy-
dependent transmission coe�cient, j�E�:
krate�T � � �kT=h� Qz=QAQB

ÿ �
�
Z1
0

j�E� exp�ÿE=kT �d�E=kT � : �13�

Note that Eq. (13) reduces to Eq. (12) if we return to the
classical approximation for the transmission coe�cient,
j�E�:

jclassical�E� � 0: E < DEz0
1: E > DEz0

( )
: �14�

If we include quantum interference so that j�E� can be
less than 1 for E > DEz0, then we have also included one-
dimensional recrossing in j�E�. This requires solution
of the one-dimensional SchroÈ dinger equation along
the reaction path, rather than just integrating
exp�ÿ2pf2lrp�V �rrp� ÿ E�g1=2rrp=h� over the region with
V �rrp� > E.

Although in his original paper [1], Eyring only al-
lowed that ``tunneling may occasionally play some role'',
we can more easily describe the pervasive in¯uence of
TST if we include quantum mechanical tunneling in our
reference equation. Regrettably, Eq. (13) does not pro-
vide a clear intuitive picture of the role of the barrier
height, but the additional complexity is necessary to
describe both the low-temperature rates of hydrogen-
transfer reactions (i.e. tunneling) and the general e�ects
of recrossing.

Simultaneous with Eyring's work, Evans and Polanyi
[17] developed equivalent rate equations, but Eyring and
Wynne-Jones [18] immediately extended TS to solutions
by connecting with the macroscopic thermodynamic
quantities DH z and DSz, thus providing the link from
molecular collision theory all the way to these phe-
nomenological macroscopic quantities.

4 The impact of TST on chemical kinetics

Eyring's TST has provided the basic conceptual frame-
work for the interpretation of the rates of nearly all
chemical reactions on a bulk scale. He quickly applied
his new theory to homogeneous gas-phase thermochem-
ical reactions, photochemical reactions, heterogeneous
catalysis, and reactions in solution [19]. He even
considered such topics as viscosity and di�usion [19].

The greatest impact so far has been as a qualitative
interpretive tool, rather than the achievement of the
original goal of a quantitative theory of absolute rates.
In his original paper Eyring stated: ``The calculation of
the concentration of activated complexes is a straight-
forward statistical problem, given the moments of inertia
of the complex and the vibrational frequencies. This
information is given with su�cient accuracy, even by our
very approximate potential surfaces, to give good values

for the partition functions.'' Even Eyring could be
completely wrong. The ab initio calculation of the par-
tition functions has proven di�cult, but the ab initio
calculation of the barrier heights ± until very recently ±
appeared impossible.

In spite of these di�culties in quantitative imple-
mentations, TST has nevertheless provided a framework
for understanding even the most complicated reactions.
TST immediately provided a deeper understanding of
collision theory. The collision theory rate in Eq. (5) can
be recovered by evaluating Eq. (12) for the reaction of
two point particles (i.e. Qrot � Qvib � Qelec � 1) to form
a linear TS (i.e. Qrotkrp � Qvib � Qelec � 1). Comparison
of Eq. (6) with the general form then reveals the nature
of the steric factor:

PAB�TST� �
QzrotkrpQzvibQzelecj�E�

QrotQvibQelec� �A QrotQvibQelec� �B
; �15�

where Qzrotkrp is the partition function for rotation about
the reaction path coordinate. The portion of the entropy
of activation arising from the translational partition
functions was included in Eq. (5), so the dominant ad-
ditional entropy e�ect in Eq. (15) is the reduced ro-
tational freedom in the TS, i.e. Qzrotkrp � �Qrot�A�Qrot�B.
Hence, the steric factor is indeed an appropriate
description of P;AB.

Until fairly recently, successful applications of TST

have treated the barrier height, DEz0, as an adjustable

parameter. Nevertheless, our basic understanding of
general homogeneous and heterogeneous catalysis and
even enzyme active sites is based on qualitative consid-
erations of the role of the TS. Qualitative estimates of
variations in zero-point energies and in vibrational and
rotational partition functions can be based on experience
and analogy. Our ability to anticipate the qualitative
e�ect of substituting deuterium for hydrogen has led to a
whole industry of mechanistic studies through isotopic
substitution [20].

We can expect the new millennium to spawn a new
age of routine quantitative absolute rate predictions
based on the con¯uence of chemically accurate ab initio
electronic structure theory with continued re®nement of
Eyring's TST.

5 The evolution of absolute rate theory

Re®nements in Eyring's TST have been driven both by
developments in electronic structure theory and by
progress in understanding how to apply this emerging
computational technology to the prediction of chemical
reaction rates. A very thorough recent review of the
current status of TST gives the informed perspective of
the primary contributor to these modern re®nements
[21]. Our starting point is the PES, which we can now
routinely generate from ®rst principles.

5.1 Ab initio PESs

The journey of the PES from the highly speculative
semiempirical formulations of London, Eyring, and
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Polanyi [13, 14] to the ®rm reality of modern ab initio
electronic structure theory began with the molecular
orbital concepts introduced by Mulliken [22] (1966
Nobel Prize in Chemistry). These ideas were developed
into a practical computational method on the new
digital computers by Roothaan [23]. Early calculations
were severely limited by the di�culty in evaluating
integrals over Slater-type orbitals (due to the cusp at
each nucleus) [24], until Boys demonstrated the advan-
tages of Gaussian basis sets [25]. At this point Pople
released the computer program Gaussian 70, which has
evolved into a very comprehensive and widely used
computer program [26], implementing his model chem-
istry concept [27], for which he was to share the 1998
Nobel Prize in Chemistry. The model chemistry concept
of Pople provided a well-de®ned broad approach to
general classes of problems, thereby removing the
arbitrariness of ad hoc decisions for each particular
case. Improvements in both computer hardware and
computational methodology have each increased the
speed of ab initio calculations by a factor of about 104

since those early days (based on the author's timing
comparison of 24 h for a minimum basis set self-
consistent-®eld calculation on ethane in 1964 versus
8 ms for the same calculation today). The combined
e�ect has made ab initio theory into a practical tool for
chemical predictions.

Among many other developments important in
achieving the current state of the art in computational
quantum chemistry, we should recognize the trans-
planting of coupled-cluster methods from nuclear
physics by Bartlett and Purvis [28], providing a man-
ageable approximation to full con®guration interaction
calculations. The development of systematic sets of
atomic basis functions by Dunning [29] has provided a
tool to probe convergence to the complete one-electron
basis-set limit, which can be compared to results ob-
tained from the e�cient implementation of explicit
functions of interelectronic coordinates by Kutzelnigg
and Klopper [30].

In a complementary development, very rapid, if
inexact, evaluations of a PES are now possible through
the density functional theory methods developed by
Hohenberg and Kohn [31], Kohn and Sham [32],
Lee et al. [33a], Parr and Yong [33b], and Becke [34], for
which Kohn shared in the 1998 Nobel Prize in Chemistry.

5.2 Evaluation of Qz

It is the genius of TST that only the saddle point of the
PES need be examined. At low pressure, we can use the
ideal gas partition functions for translational motion:

Qtrans � V 2pmkT=h2
ÿ �3=2

; �16�
The geometry of the saddle point provides the moments
of inertia, Ij, required for evaluation of the rigid rotor
rotational partition functions

Qrot � 2p
4p
r

� �Y
j

2pIjkT
h2

� �1=2

�17�

which are valid except at very low temperatures. The
vibrational partition functions are a bit more problem-
atic. The stretching and bending frequencies, mj, are
generally large enough that the harmonic oscillator
partition functions

Qvib �
Y

j

1ÿ exp�ÿhmj=kT �� �ÿ1 �18�

provide an adequate approximation; however, the
torsional modes (especially torsion of one reactant with
respect to the other) should be treated as free or
hindered rotors [35].

The previous discussion presumes that we know the
geometry of the TS and the second derivative of the
energy with respect to each of the vibrational normal
modes. Since the TS is a stationary point the ®rst de-
rivative of the energy with respect to each coordinate
must vanish. Hence, both problems require knowledge
of the derivatives of the energy with respect to the
positions of the nuclei.

5.3 Analytical derivatives

The farsighted development of methods to calculate the
analytical derivatives of the ab initio energy with respect
to the Cartesian coordinates of the nuclei by Pulay [36]
played a key role in the practical implementation of TST.
Further developments by Handy and Schaefer [37a]
Schlegel et al. [37b], and Johnson and Frisch [38], among
others greatly expanded the number of ab initio methods
for which these derivatives were available. The tools to
evaluate the partition functions were at hand, but ®rst we
must locate the TS.

5.4 Locating TSs

Once these derivatives are available, e�cient and reliable
algorithms are still required for locating the TS and in the
case of variational TST (VTST) for obtaining a portion
of the reaction path. The former was often a rather
frustrating search requiring a guess for the reaction path
along which a maximum energy point was determined.
Once the TS was located, ``reaction-path following'' was
more routine, being essentially a matter of starting o� in
the direction of negative curvature of the PES and
following the energy gradient to reactants and products.

Finding the geometry of a stable molecule is quite
straightforward, since following the energy gradient
is su�cient to guarantee eventual convergence to the
nearest local minimum on the PES. Saddle points pro-
vide a more interesting challenge, for which the qua-
dratic synchronous transit (QST) algorithms of Peng
and Schlegel [39] represent a dramatic improvement over
previous methods, and ®nally give us a tool, making TS
geometry optimizations relatively routine.

5.5 Variational transition-state theory

We can trace the origins of VTST all the way back to
Wigner [40], but this acronym is now generally associ-
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ated with the modern development that has been
dominated by Truhlar [41].

The exact quantum mechanical absolute rate constant
can, in principle, be obtained as a Maxwell±Boltzmann
average over the state-to-state reaction cross sections
[42]. The rate is also given by the net ¯ux through any
surface in phase space dividing products from reactants.
VTST seeks the best such window for the plunge from
reactants into products. This is the surface giving the
minimum one-way forward ¯ux, so the two-dimensional
recrossing we ignore must also be a minimum, the sum
being constant. Recognizing that Eyring's TST includes
the e�ects of both the zero-point energy and the entropy
of activation through the partition functions, it is clear
that the forward ¯ux depends on the Gibbs free energy,
DGz0�T �, at the TS. We should therefore select the TS as
the point along the reaction path at which the Gibbs free
energy is a maximum. The tunneling is then determined
by the solution of the one-dimensional SchroÈ dinger
equation along the reaction path, with a potential-
energy function given by G�T ; rrp�. This is what Truhlar
describes as canonical zero curvature (ZC) VTST [43].
Note that the geometry of the TS is now a function of
both the temperature and the isotopes of the atoms, in
contrast to the saddle point on the Born±Oppenheimer
PES.

VTST is especially important for reactions without
a saddle point on the Born±Oppenheimer PES, such
as radical recombination reactions. The free energy of
activation for such reactions is often dominated by
entropic e�ects.

5.6 Reaction-path curvature

If the reaction path coordinate were truly separable from
the other coordinates, then classical recrossing of the
barrier would not occur and our j�E� would give the
exact quantum mechanical recrossing rate. Unfortunate-
ly, this situation is impossible. For example, if our
chemical reaction is

Aÿ B� C ! A� Bÿ C �19�
then the initial reaction path must be rABÿC, the distance
from the center of mass of AB to C, while the ®nal
reaction path must be rAÿBC, the distance from A to the
center of mass of BC. The resulting curvature of the
reaction path is the primary underlying reason why TST
cannot be exact for such a reaction. This curvature
necessarily couples the reaction path to the other
coordinates and thus leads to corner cutting (i.e. ®nding
a shorter path not quite traversing the saddle point) [44],
bob sledding (i.e. riding up the sides of the exit channel)
[45], and two-dimensional corrections to recrossing.
Re®ned versions of TST designed for both small [46]
and large curvature [47] have been developed. The
largest curvature in mass-weighted coordinates corre-
sponds to the transfer of a light atom (i.e. hydrogen)
between two heavy atoms ± precisely the situation where
tunneling will be most important. However, canonical
ZC-VTST is certainly adequate for reactions not involv-
ing hydrogen.

5.7 Unimolecular reactions

The rate of a unimolecular reaction can depend upon
both the rate at which collisions provide the required
activation energy and the rate at which this energy can
be funneled into the reaction coordinate and used to
cross the dynamical bottleneck. The crossing of the
dynamical bottleneck is properly described by Eyring's
TST (or generalizations thereof). The intramolecular
energy transfer is usually described by the exchange of
energy between coupled harmonic oscillators using the
unimolecular rate theory developed by Rice, Rams-
perger, Kassel, and Marcus [48]. In the high-pressure
limit, the reaction is slow compared to the collision rate
and so the reactants maintain a Boltzmann energy
distribution, but most unimolecular reactions are stud-
ied experimentally under conditions where corrections
for non-Boltzmann behavior are required.

5.8 Recent progress in barrier heights

For a long time, it was not possible to assess the
accuracy of TST. The early PESs were more a result of
speculation than ®rm knowledge, so discrepancies with
experiment were impossible to interpret. Two develop-
ments have dramatically altered this impasse.

The ®rst is the re®nement of quantum dynamics to
accurately determine the rate constant that results from
a given PES [49±51], thereby providing an evaluation of
the various levels of TST that does not rely on the
availability of an accurate PES.

The second breakthrough is our rapidly developing
ability to remove inaccuracies in the ab initio PES as the
bottleneck in the predictive ability of absolute rate the-
ory. The benchmark paper by Diedrich and Anderson
[52] on H3 set a new standard of accuracy for a PES.
Having at least one PES accurate to �0.01 kcal/mol
allows us to begin the task of objectively evaluating the
reliability of methods applicable to larger systems ±
without reference to problems in the interpretation of
experimental rates. Klopper et al. [53] have recently re-
viewed the state of the art for ab initio calculations on
systems with up to about ®ve atoms. An accuracy of
�0:2 kcal/mol is now practical. This error in calculated
barrier heights corresponds to an error of �40% in the
rate constant at room temperature. Disagreement with
experiment by more than a factor of 2 can then be
attributed to a de®ciency in the ¯avor of TST that is
employed. The recent compilation of articles on com-
putational thermochemistry by Irikura and Frurip [54]
gives a very useful overview of the current state of
computational methodology for larger systems. We can
anticipate very rapid progress in this area over the next
few years.

6 Summary and conclusions

The 1935 paper by Eyring represents the successful
conclusion of a long search for a quantitative theory of
chemical kinetics, providing the link from the micro-
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scopic world of the quantum mechanics of single
molecules to the macroscopic world of the rates of
chemical reactions in bulk matter. TST forms the very
core of our conceptual framework for understanding
chemical reactions ± whether in the gas phase, on
surfaces, in solution, or even in the active sites of
enzymes.

The extreme sensitivity of chemical reaction rates to
small changes in the PES con®ned early applications to
semiempirical qualitative interpretations of experimen-
tally measured rates. It is in this interpretive role that
TST has had such a pervasive in¯uence in chemistry. As
our ability to calculate accurate PESs and to carry out
quantum dynamics calculations has improved, the role
of TST has evolved. Re®nements in TST and in our
ability to generate chemically accurate PESs are opening
a new era in which we shall predict the rates of chemical
reactions from ®rst principles.

We can be con®dent that various incarnations of
Eyring's TST will continue to provide the foundation
for our qualitative and quantitative understanding of
chemical reaction rates throughout the next century.

References

1. Eyring H (1935) J Chem Phys 3: 107
2. Joyce J (1922) Ulysses. Shakespeare and Company, Paris,

p 196
3. (a) Wilhelmy L (1850) Pogg Ann 81: 422; (b) Wilhelmy L (1850)

Pogg Ann 81: 499
4. Arrhenius S (1889) J Phys Chem 4: 226
5. Kohnstamm P, Sche�er FEC (1911) Proc K Ned Akad Wet 13:

789
6. McC Lewis WC (1918) J Chem Soc 113: 47
7. (a) Niven W (ed) (1952) Maxwell JC, Scienti®c papers, vol 1.

Dover, New York, p 380; (b) Boltzmann L (1876) Wien Ber 74:
503

8. Marcelin R (1914) C R Acad Sci 158: 407
9. Herzfeld KF (1919) Ann Phys 59: 635
10. Tolman RC (1920) J Am Chem Soc 42: 2506
11. Truhlar DG (1978) J Chem Ed 55: 309
12. Born M, Oppenheimer JR (1927) Annl Phys 84: 457
13. London F (1929) Z Elektrochem 35: 552
14. Eyring H, Polanyi M (1931) Z Phys Chem Abt B 12: 279
15. Pelzer H, Wigner E (1932) Z Phys Chem Abt B 15: 445
16. Wigner EP (1932) Z Phys Chem B 15: 445
17. Evans MG, Polanyi M (1935) Trans Faraday Soc 31: 875
18. Eyring H, Wynne-Jones WFK (1935) J Chem Phys 3: 492
19. Glasstone S, Laidler KJ, Eyring H (1941) `The theory of rate

processes' McGraw-Hill, New York
20. Wiberg KB (1955) Chem Rev 55: 713
21. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem

100: 12771
22. (a) Mulliken RS (1949) J Chim Phys 46: 497; (b) Mulliken RS

(1955) J Chem Phys 23: 1833; (c) Mulliken RS (1955) J Chem
Phys 23: 1841; (d) Mulliken RS (1955) J Chem Phys 23: 2338;
(e) Mulliken RS (1955) J Chem Phys 23: 2343

23. Roothan CCJ (1951) Rev Mod Phys 23: 69
24. Slater JC (1930) Phys Rev 36: 57
25. Boys SF (1950) Proc R Soc Lond A 200: 542
26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,

Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann
RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin
KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M,

Cammi R, Mennucci B, Pomelli C, Adamo C, Cli�ord S,
Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K,
Malick DK, Rabuck AD, Raghavachari K, Foresman JB,
Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A,
Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ,
Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez
C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong
MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA
(1998) Gaussian 98. Gaussian Pittsburgh Pa

27. (a) Pople JA (1973) In: Smith DW, McRae WB (eds) Energy,
structure and reactivity. Wiley, New York, p 51; (b) Hehre WJ,
Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular
orbital theory. Wiley, New York

28. Bartlett RJ, Purvis GD (1978) Int J Quantum Chem 14: 516
29. (a) Dunning TH Jr (1989) J Chem Phys 90: 1007; (b) Kendall

RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:
6796; (c) Woon DE, Dunning TH Jr (1993) J Chem Phys 98:
1358; (d) Dunning TH Jr (1994) 100: 2975; (e) Dunning TH
Jr (1995) 103: 4572; (f) Wilson AK, van Mourik T, Dunning
TH Jr (1996) J Mol Struct (Theochem) 388: 339; (g) Woon
DE, Peterson KA, Dunning TH Jr (1998) J Chem Phys 109:
2233

30. (a) Kutzelnigg W (1985) Theor Chim Acta 68: 445; (b) Klopper
W, Kutzelnigg W (1987) Chem Phys Lett 134: 17; (c) Klopper
W, Kutzelnigg W (1989) Stud Phys Theor Chem 62: 45

31. Hohenberg P, Kohn W (1964) Phys Rev B 136: 864
32. Kohn W, Sham LJ (1965) Phys Rev A 140: 1133
33. (a) Lee C, Yang W, Parr RG (1988) Phys Rev B 37: 785
33. (b) Parr RG, Yang W (1989) Density functional theory of

atoms and molecules. Oxford University Press, New York
34. (a) Becke AD (1993) J Chem Phys 98: 1372; (b) Becke AD

(1993) J Chem Phys 98: 5648
35. Truhlar DG (1991) J Comput Chem 12: 266
36. Pulay P (1977) In: Schaefer HF III Applications of electronic

structure theory. Plenum, New York, p 153
37. (a) Handy NC, Schaefer HF III (1984) J Chem Phys 81: 5031;

(b) Schlegel HB, Binkley JS, Pople JA (1984) J Chem Phys 80:
1976

38. Johnson BG, Frisch MJ (1994) J Chem Phys 100: 7429
39. Peng C, Schlegel HB (1994) Isr J Chem 33: 449
40. Wigner E (1937) J Chem Phys 5: 720
41. Truhlar DG, Garrett BC (1984) Annu Rev Phys Chem 35: 159
42. Eliason MA, Hirschfelder JO (1959) J Chem Phys 30: 1426
43. (a) Truhlar DG (1970) J Chem Phys 53: 2041; (b) Garrett BC,

Truhlar DG (1979) J Phys Chem 83: 1052; (c) Garrett BC,
Truhlar DG (1979) J Phys Chem 83: 1079

44. Skodje RT, Truhlar DG, Garrett BC (1982) J Chem Phys 77:
5955

45. Marcus RA (1966) J Chem Phys 45: 4493
46. Skodje RT, Garrett BC, Truhlar DG (1981) J Phys Chem 85:

3019
47. Bondi DK, Connor JNL, Garrett BC, Truhlar DG (1983)

J Chem Phys 78: 5981
48. (a) Rice OK, Ramsperger HC (1928) J Am Chem Soc 50: 617;

(b) Kassel LS (1928) J Phys Chem 32: 1065; (c) Marcus RA,
Rice OK (1951) J Phys Colloid Chem 55: 894; (d) Marcus RA
(1965) J Chem Phys 43: 2658

49. Truhlar DG, Kuppermann A (1972) J Chem Phys 56: 2232
50. Schatz GC, Kuppermann A (1976) J Chem Phys 65: 4668
51. Friedman RS, Truhlar DG (1999) In: Simon B, Truhlar DG

(eds) Multiparticle quantum scattering with applications to
nuclear, atomic, and molecular physics. Springer, Berlin Hei-
delberg New York

52. Diedrich DL, Anderson JB (1992) Science 258: 786
53. Klopper W, Bak KL, Jùrgensen P, Olsen J, Helgaker T (1999)

J Phys B At Mol Opt Phys 32: R103
54. Irikura KK, Frurip DJ (eds) (1998) Computational thermo-

chemistry. ACS Symposium Series 677. American Chemical
Society Washington, D.C.

195


